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Unit 6
Dynamic Analysis




Unit Outcome

General Dynamic Equation for free and forced vibration
Formulation of undamped free vibrationby eigenvalue
method

Determine natural frequency bar element by eigenvalue
method
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General Dynamic Equation for forced vibration

mx +cx+kx = F(t)
d’  dx -
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Dynamics of a Spring-Mass System

LSS A A S
e

Applying Newton'’s second law of motion, f = ma, to the mass, we obtain the
:quation of motion in the x direction as

F(1) = kx = m3 (16.1.1)

vhere a dot over a variable denotes differentiation with respect to time; that is,
') =d()/di. Rewrnting Eq. (16.1.1) in standard form, we have

m3¥ + kx = F(1) (16.1.2)
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The homogeneous solution to Eq. (16.1.2) is the solution obtained when the right
side is set equal to zero. A number of useful concepts regarding vibrations are obtained
by considering this free vibration of the mass—that is, when F(7) = 0. Hence, defining

.k
. = — 16.1.3
== (16.1.3)

and setting the right side of Eq. (16.1.2) equal to zero, we have

¥+o’x=0 (16.1.4)

|owar o — wr

T=ky a—o| F— F() = ——— ma = mt

where @ 1s called the natural circular frequency of the free vibration of the mass,
expressed in units of radians per second or revolutions per minute (rpm). Hence, the
natural circular frequency defines the number of cycles per unit time of the mass
vibration. We observe from Eq. (16.1.3) that & depends only on the spring stiffness k
and the mass m of the body.
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Direct Derivation of Bar Element

dy,
h{ - ¥ l“z - -ffx{”

Again, we assume a linear displacement function along the ¥ axis of the bar [see
Eq. (3.1.1)]; that is, we let

it =a) +ax (16.2.1)
As was shown in Chapter 3, Eq. (16.2.1) can be expressed in terms of the shape func-
tions as
it = Nidyx + Nadoy (16.2.2)
where — 1 _'? — i
N =1 7 N2 i3 (16.2.3)
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Again, the strain/displacement relationship is given by

{esh =3 = [B){d}

where 1B] = [—% %] {dy = {i:}

and the stress/strain relationship is given by

{o:} = [Dl{ev} = [D][B}{d}

r-{:l

The bar is generally not in equilibrium under a time-dependent force; hence, f,, #

f5,. Therefore, we again apply Newton's second law c-f motion, f = ma, to each node.
In general, th-: law can be written for each node as *““the external {appln:u:lj force f°
minus the internal force is equal to the nodal mass times acceleration.” Equivalently,
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adding the internal force to the ma term, we have

i.I_.l'c.

A (o , - - I.::;d?_,..
fi: =ﬁx + hy 2 1- ,fjx =f3_.l- + > 22 [162?]

ol

where the masses m; and m, are obtained by lumping the total mass of the bar equally
at the two nodes such that

ny = —— m; = —— (16.2.8)
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_}Fﬂ _ ,FF],. + [Im 0 ] a2 b
,f:ift .f’-*_r 0 i d Ef}lr
art

Using Egs. (3.1.13) and (3.1.14), we replace {/} with [k]{d} in Eq.

the element equations

(F(0)} = [K{d} + [m]{d}

where [j}]=%! } -H

is the bar element stiffness matrix, and

=510 1

pAL |1 0
2

is called the lumped-mass matrix. Also,

o™ {d)

-
o=

(d} =
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Consistent-mass Matrix

This mass matrix is called the consistent-mass matrix because it is derived from the
same shape functions [N] that are used to obtain the stiffness matrix [k]. In general.
[1i1] given by Eq. (16.2.19) will be a full but symmetric matrix. Equation (16.2.19) is

i) = |[[ ot v

¥

. I HEED

Simplifying Eq. (16.2.20), we obtain

1 hy
: o T U
[1i1] = pA L . [l -1 Ej| dx
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(F(0)} = [KN{d} + [M){d}

K =S k9] (M =3"m@]  {F} = (/)

=] e=1 p=]
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Bar Element M[ 10 ] pAl 2 1 }
2 0 1 6 58
Plane Truss Element 1000 -2 0 10
‘w 0 1 00 '&I 2 01
4 0010 6 | Symmetric2 0
0001 L 5
= 1 0 0 0 0m 9
Three Noded CST 0101 0]
00 2 010 1
Element .
pAt 100 pAt 2010
3 Symmetric ] g 12 Symmetric 2 ¢
1 2 0
~ 1 0 0 0 = 56 n
Beam Element 1 221 54 -131
2?! G 0'¢ 9 pAl 21 42 13 -3P
0010 420 54 131 156 -22
L 0 0 0

L 131 -32 -2y 4R
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Elgenvalue Method

wmemnmuwrmmaw:

Siks =0

._?
< [m] () *(ﬁlm) -0
Governing muwmwam‘mm:

(M] {Ux) +[K] (Uy} = 0

For simple harmonic motion,
X= —ex
Hence, (Uyn} = -@?{Un)
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[K]-A[M]] {Uxy} =0
where, A = @’ = eigenvalue
[K] = global stiffness matrix
[M] = global mass matrix

{Un} = global nodal displacement vector
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Lumped mass matrix for bar element is, Casistuumassmanix'forbarelmemis,—

“wegt 0] w5 [ )

4 Consistent element mass matrices :
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5. Global consistent mass matrix :

(M] = [m)+[m],
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[K]-AMI] (Up} =0

F 2 -2 © | Wy
AE pi2 3 o1 I\ -
L =% 3. S [ U; |

o BLT pL”
6 3
— 2apL? ApL? 3
3E 3E
N S R e
_A_E; ; - AB mz xpLz L2
] e || 0 et laeir =0
L 0o -1 14 2 2 G Uy
0 l& &LL_
6E 3E
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T 2=2 0 [4a 22 0 C Uy
ﬁ%— -2 3--1-%- 2a6§a be Uy p =0
. L o0 -1 1. L 0 a 24 U Us.
2-4a -2-2a O U;
AEl 320 3-6a —1-a [{ Uz =0
0 -1-a 1-2a Us

8. Specified boundary conditions :
It is an unconstrained bar. Hence, there are no specified boundary conditions.
Hence, equation (j) becomes,
2(1-2a) -2(1+a) 0 U,

=2(1+a) 3(1-2a) «1+a) U =0
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Determination of eigenvalue :

21-Ra) -2(1+a) 0
20 +a) 3(1-20) «(1+a)| =0

0 «l1+a) (1-2a)
2(1 - 2a)[3(1 - 20)* - (1 + @)?] +2(1 + @)[-2(1 + o)1 = 20)=0] = 0
(1 -20)3 - 120+ 12a-1 2a-0?) -2 (1 + @)l =20+ & -2a2] = 0

(1-20) (11a? - 14a+2) + (2 +20) Qe +a-1) = 0

(1la2— 14¢+2-22a3 +28a2-4a)+(4a2+2a-2+4a3+2a2_2¢) =0
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(220 +39a% - 180 +2) + (4o + 62 =2) = O

il
o

(-18c> + 4502 — 18a)

9a(-202 +5a-2) =0

I
o

e -5a+2)

a=0 or (a%-5a+2) =0

o . 5151—5)2-4:-:2:-:2

2x2

_ 5+3

or a >
or a =05 or a=2
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10. Determination of natural frequency :

oaz A

2 3E o 12E
- or
ot-= 0 oL2 *® a2

1.73 |E 346 |E
@ = Oradls or = ;’M’SO‘T‘\/%radIS

%
®;=0rad/s ; oz-—'\/_ndlsand -—\/- rad/s

2%

a1 [E 0275\/' e
and = 21t =2xxL
e
and f = 21: ZxxL

o 0275 |E 055 [E
fl..o; f L\/;Hzandfg-T-\/%Hz
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Estimate - the natural frequencies of axial vibrations of bar shown in Fig. P.6.2.5(a). using both consistent as wall as |

iass matrices and compare the results. The bar is having uniform cross-section with cross-sectional area A = 50 x 108

RRSS malrices ; 3 |

15m
Fig. P. 6.9.5(3)
Solution :
Given : Ap = 50x10°%m? ; L = 15m ;
E = 2x10'! Nm? ; p = 7800 keg/m° :

| = h= 1-% ad2u075m
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1  Discretization of bar :

U1'U1 Uz.Uz U3‘U3
@® @

2 3

= 1, __.’

T

Fig. P. 6.9.5(b)

o  The stepped bar is modelled with two bar elements, as shown in Fig. P. 6.9.5(b).

e Element connectivity for stepped bar :

BEREIIN A WSS § BT IR AR e W R W T

Element Number ® | Global Node Number ‘n’ of

Local Node 1 | Local Node 2

[ 5]

1
@ 2 3

Degrees of freedom of assembly (N) :

N = D.O.F. per node x Number of nodes in assembly =1 x3 =3

Both the elements are identical. Hence, [k]; = (k]2 and [m], = [m];
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o  Degrees of freedom of assembly (N) :
N = D.O.F. per node x Number of nodes in assembly =1 x 3 = 3

e  Both the elements are identical. Hence, [k]; = [k]; and [m], = [m];
Element stiffness matrices :

1 =1
kn= (kp=2E[ 17 ]

Global stiffness matrix :

[K] = [kh+[k]L

1 -1 0 1-1 0 1
AE _AE| _ =
K = 2 -1 (1+1) -1| =5 { 2=1| 2Nm
¢ =1 1 0-1 143

Consistent element mass matrices :

arl 21
[m]; = [m) = ~°—6-[ 1 2]kg ‘
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Global consistent mass matrix :

(M] = [m]+[m]

p) I 0
M= BALE ) - AL
() | 2
A Global nodal displaceiment veotor |
Uy
(Un) =1 U
Uy )

fo Bquation of elgenvalue and elgenveotor |

K-

|
fopl g £
F-ﬁlifou”
£ ol ol |,
W 35 oF ¢
1
plo  pl
L0 o 3E -°
|
Izm
3

AMM] ] (Uy) = 0
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- 1 “' ~— QL w
/ i oF 3% %:' Pl Y
0 -t 1 2o Uy
R P
¢ L 0 §F L
i Apl &
(' m) (' "‘;T) 0
Al i ap )
\ Al ( 21 '1)
I ( I+%5) \2-535 g r .0
Apl? -
. L
L .0 (' : ms) ('
2
lake a = A'éLl
\ub«tlmtlng Lquatlon (®) in Equation (1),
?iofh 3 e ol =
+2) 0 PR
AE — R
Tl = a _.S) -(I+%) Uz p=0
( Q o U,
L 0 | - “6) (1..3) _J
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(2‘2Ta) ‘(‘*%) { uz}

=0
42 g
at %) (-9)
termination of eigenvalue :
From equation (@),
2a a
-5 {+9)
=0
[+] a
‘(1+6) ("3)
2
2a. a &) -
(@-5)1-9)-(+9) -0
20. 20. 2a -— -
c-2-220) (248 -
2a° 4a 0.
(9 3 *2-36-3" ') =9

2
(F-241) -0

702 -60a+36 = 0
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+60 (= 60)2 -4 x 7 x 36

% = 2x7

_ 60£50912
. 14

~a = 0649 or 7922

2
But a = ')‘%!-[me equation (g)]

Substituting equations (g) in equation (j),

L%’E = 0.649 or 7.922

2 x 7800 x (0.75)
2 x 10!!

= (0.649 or 7.922

Ax2.19375x107° = 0.649 or 7.922
A = 29.59x10% or361.11 x 10
Determination of natural frequency :
0 = A

o2 = 29.59%10° or 361.11x10°

5439.67 rad/s or 19002.9 rad/s

e
I

o = 5439.67 rad/s and ®; = 19002.9 rad/s
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(i) Lumped Matrix Method
Discretization of bar -
. U-.U, o Uz'ijz 1 Y "jZ
; | |
~— = — = —
1 2 3
Fiz P.6.9.5(b)

& S 3 » A . 2 - =
The semed tur is mndeljed Wit two ter elements, 2 shosn In Fig P. 6.9.500).
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Table P. 6.9.5 : Element Conpectivity
Element Number © _ Giokal Node Nomber ‘s’ of
Local Node 1 " Local Node2
© ] 2
@ 2 3

Degrmo{ﬁudonofmbb-(_\'):
N = D.O.F.p:rnad:z.\'wnbcrofnodainmemblyﬂl #3=3

L. S ...
§=T=0.;5m

3oth the slemnents e identical. Hence, [k];= [k]; and [m]y = [m];

ment stiffness matrices :

s
kp= (en=4F| '
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3. Global stiffness matrix :

[K] = [k];+[k]},

L 2 JQj n
| | 1

1-1 0
AE
- 2= _ - AE
X] 7 1 (1-1) -1 == <1 21| 29
R 0-1 1] 3

4. Lumped element mass matrices :

[m];= [m]2=%ul ; :)]kg

; W w"w FAPEIETE FEPTEGY A

(M] = (ml+(m

1 0 ¢ w "
£l -
pg = 2 0 4.y o| <25 g;i s 13 %
L 0 9 1.l ‘ ﬂz-
¢ 3D 3

g Global nodal displacement vector -

I Iy |
C2tm

l ':JI
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7.

Equation of eigenvalue and eigenvector :

(K |~ 34M) | (Un} = 0

1 -1 ‘2!'; il
-1 2 -1 -Z'-?E" 7] % 7
n -1 1 L3 %-
_(1-%3 -1 0
- I (I
o 0 -1 (l—;zéz)'_

L

£
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Take o =g e ()
Substingting Eguationdq) in Eguztion (p),
g -f TS "‘ -
;.'-2)' v ! ..,.;z’ﬁ.’: J Uy ]
Al_z_ % -‘ (2—'(1, -1 l Lz[ = () m(')
’ “. L U)
L'" ‘ : ~1 (l-‘z')-
Specified boundary conditions :

At node 1, there is rigid suppon, Hence, Uy = 0. ks do.£. 1 is fized, first row and first column can be eliminated from Equation

(r)

Hence, Equation (1) becomes,
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9.

=0
a
-1 (l —3) U;
Determination of eigenvalue :

From Equations (s),

2-a) -1

1 (-9 7

(2-a)(1 -%)-1

2
2—u—a+-az—-| =

I
o

2
22"-2a+l = ()
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@?-4a+2 = 0

4[4 =4 x 1 x2
a -
2x1

_ 44283
a 2

0.583 or3.417

=)
u

But a = % [From equation (q))

Substituting equations (q) in equation (t),

Aol
E

0.583 or 3417

2 x 7800 x (0.75)°
2 x IO"

0.583 or 3.4147

Ax2.19375x10~° = 0.58 or 3.414

26.44 x 10% or 155.62 x 106

>
|}
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10. Determination of natural frequency :

.

0 = A
©? =26.57x10% or 155.76 x 10°
S = 5141.6rad/s or 12480.4 rad/s

®; = 5141.6 rad/s and @; = 12480.4 rad/s

(1) Comparlaon of Results

Conebstont Wity wethnd

Wy = BT s ®) = 19002.9 rad/s

Lamped minteds wethod

Wy = Sl el Wy = 12480.4 rad/s
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Thank You
For Your Attention
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